Site-directed modification of DNA duplexes by chemical ligation.

نویسندگان

  • N G Dolinnaya
  • N I Sokolova
  • O I Gryaznova
  • Z A Shabarova
چکیده

The efficiency of chemical ligation method have been demonstrated by assembling a number of DNA duplexes with modified sugar phosphate backbone. Condensation on a tetradecanucleotide template of hexa(penta)- and undecanucleotides differing only in the terminal nucleoside residue have been performed using water-soluble carbodiimide as a condensing agent. As was shown by comparing the efficiency of chemical ligation of single-strand breaks in those duplexes, the reaction rate rises 70 or 45 times if the 3'-OH group is substituted with an amino or phosphate group (the yield of products with a phosphoramidate or pyrophosphate bond is 96-100% in 6 d). Changes in the conformation of reacting groups caused by mismatched base pairs (A.A, A.C) as well as the hybrid rU.dA pair or an unpaired base make the template-directed condensation less effective. The thermal stability of DNA duplexes was assayed before and after the chemical ligation. Among all of the modified duplexes, only the duplex containing 3'-rU in the nick was found to be a substrate of T4 DNA ligase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The use of BrCN for assembling modified DNA duplexes and DNA-RNA hybrids; comparison with water-soluble carbodiimide.

Both cyanogen bromide (BrCN) and 1-ethyl-3-(3'-dimethylaminopropyl) carbodiimide may be used as coupling reagents for the template-directed assembly of DNA duplexes containing the sugar-phosphate backbone modification. Both reagents show similar ligation site structure-specific trend. Practical recommendations are given for selection of the condensing reagent depending on the properties of the ...

متن کامل

Click Nucleic Acid Ligation: Applications in Biology and Nanotechnology

Biochemical strategies that use a combination of synthetic oligonucleotides, thermostable DNA polymerases, and DNA ligases can produce large DNA constructs up to 1 megabase in length. Although these ambitious targets are feasible biochemically, comparable technologies for the chemical synthesis of long DNA strands lag far behind. The best available chemical approach is the solid-phase phosphora...

متن کامل

Template-directed Chemical Ligation to Obtain 3′-3′ and 5′-5′ Phosphodiester DNA Linkages

Up to now, the direct ligation of two DNA fragments with opposite directions to obtain 3'-3' or 5'-5' phosphate ester bonds is still challenging. The only way to obtain DNA oligonucleotides containing a 3'-3' or 5'-5' inversion of polarity sites is based on professional DNA chemical synthesis. Herein, we demonstrate a convenient template-directed chemical ligation that enables 3'-3' and 5'-5' l...

متن کامل

Site-specific oxidative cleavage of DNA by metallosalen-DNA conjugates.

Ni-salen-DNA conjugates, prepared by template-directed synthesis, targeted oxidative adduct formation and strand scission at deoxyguanosine sites in complementary DNA strands of Watson-Crick duplexes.

متن کامل

Structural and kinetic aspects of chemical reactions in DNA duplexes. Information on DNA local structure obtained from chemical ligation data.

Chemical ligation of oligonucleotides in double-stranded helices has been considered in its structural-kinetic aspect. A study was made of (i) two series of DNA duplexes with various arrangements of reacting groups in the ligation junction induced by mispairing or by alteration of furanose structure (the replacement of dT unit with rU, aU, IU, xU, dxT ones) and of (ii) eight synthetic water-sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 16 9  شماره 

صفحات  -

تاریخ انتشار 1988